15,118 research outputs found

    Noise removal in multichannel images

    Get PDF
    A adaptive filtering method, the Windrow-Hoff algorithm, for enhancing multichannel signals against aditive noise was investigated. It removes noise for multichannel images containing correlated signal compoments but uncorrelated noise components. Its potential application is the enhancement of multichannel microwave satellite images as a preprocessing step for the extraction of geophysical parameters

    Turbine vane coolant flow variations and calculated effects on metal temperatures

    Get PDF
    Seventy-two air-cooled turbine vanes were tested to determine coolant flow variations among the vanes. Calculations were made to estimate the effect of measured coolant flow variations on local vane metal temperatures. The calculations were based on the following assumed operating conditions: turbine inlet temperature, 1700 K (2600 F); turbine inlet pressure, 31 N/sq cm (45 psia); coolant inlet temperature, 811 K (1000 F); and total coolant to gas flow ratio, 0.065. Variations of total coolant flow were not large (about 10 percent from the arithmetic mean) for all 72 vanes, but variations in local coolant flows were large. The local coolant flow variations ranged from 8 to 75 percent, and calculated metal temperature variations ranged from 8 to 60 K (15 to 180 F)

    Silicon nitride-aluminum oxide solid solution (SiAION) formation and densification by pressure sintering

    Get PDF
    Stirred-ball-mill-blended Si3N4 and Al2O3 powders were pressure sintered in order to investigate the mechanism of solid solution formation and densification in the Si3N4-Al2O3 system. Powder blends with Si3N4:Al2O3 mole ratios of 4:1, 3:2, and 2:3 were pressure sintered at 27.6-MN/sq m pressure at temperatures to 17000 C (3090 F). The compaction behavior of the powder blends during pressure sintering was determined by observing the density of the powder compact as a function of temperature and time starting from room temperature. This information, combined with the results of X-ray diffraction and metallographic analyses regarding solutioning and phase transformation phenomena in the Si3N4-Al2O3 system, was used to describe the densification behavior

    Restoration of multichannel microwave radiometric images

    Get PDF
    A constrained iterative image restoration method is applied to multichannel diffraction-limited imagery. This method is based on the Gerchberg-Papoulis algorithm utilizing incomplete information and partial constraints. The procedure is described using the orthogonal projection operators which project onto two prescribed subspaces iteratively. Some of its properties and limitations are also presented. The selection of appropriate constraints was emphasized in a practical application. Multichannel microwave images, each having different spatial resolution, were restored to a common highest resolution to demonstrate the effectiveness of the method. Both noise-free and noisy images were used in this investigation

    Heat transfer results and operational characteristics of the NASA Lewis Research Center Hot Section Cascade Test Facility

    Get PDF
    The NASA Lewis Research Center gas turbine hot section test facility has been developed to provide a real-engine environment with well known boundary conditions for the aerothermal performance evaluation/verification of computer design codes. The initial aerothermal research data obtained are presented and the operational characteristics of the facility are discussed. This facility is capable of testing at temperatures and pressures up to 1600 K and 18 atm which corresponds to a vane exit Reynolds number range of 0.5x10(6) to 2.5x10(6) based on vane chord. The component cooling air temperature can be independently modulated between 330 and 700 K providing gas-to-coolant temperature ratios similar to current engine application. Research instrumentation of the test components provide conventional pressure and temperature measurements as well as metal temperatures measured by IR-photography. The primary data acquisition mode is steady state through a 704 channel multiplexer/digitizer. The test facility was configured as an annular cascade of full coverage filmcooled vanes for the initial series of research tests

    Observation of Fermi-energy dependent unitary impurity resonances in a strong topological insulator Bi_2Se_3 with scanning tunneling spectroscopy

    Get PDF
    Scanning tunneling spectroscopic studies of Bi_2Se_3 epitaxial films on Si (111) substrates reveal highly localized unitary impurity resonances associated with non-magnetic quantum impurities. The strength of the resonances depends on the energy difference between the Fermi level (E_F) and the Dirac point (E_D) and diverges as E_F approaches E_D. The Dirac-cone surface state of the host recovers within ~ 2Ã… spatial distance from impurities, suggesting robust topological protection of the surface state of topological insulators against high-density impurities that preserve time reversal symmetry

    Interfacial strain in AlxGa1–xAs layers on GaAs

    Get PDF
    Detailed analysis of x-ray rocking curves was used to determine the depth profile of strain and composition in a 2500-Å-thick layer of AlxGa1–xAs grown by metalorganic chemical vapor deposition on 100 GaAs. The x value and layer thickness were in good agreement with the values expected from growth parameters. The presence of a transition region, 280 Å thick, was detected by the rocking curve. In this region, the Al concentration varies smoothly from 0 to 0.87. Measurement and control of the sharpness of such interfaces has important implications for heterojunction devices

    Scanning Tunneling Spectroscopic Studies of the Effects of Dielectrics and Metallic Substrates on the Local Electronic Characteristics of Graphene

    Get PDF
    Atomically resolved imaging and spectroscopic characteristics of graphene grown by chemical vapor deposition (CVD) on copper foils are investigated and compared with those of mechanical exfoliated graphene on SiO_2. For exfoliated graphene, the local spectral deviations from ideal behavior may be attributed to strain induced by the SiO_2 substrate. For CVD grown graphene, the lattice structure appears strongly distorted by the underlying copper, with regions in direct contact with copper showing nearly square lattices whereas suspended regions from thermal relaxation exhibiting nearly honeycomb or hexagonal lattice structures. The electronic density of states (DOS) correlates closely with the atomic arrangements of carbon, showing excess zero-bias tunneling conductance and nearly energy-independent DOS for strongly distorted graphene, in contrast to the linearly dispersive DOS for suspended graphene. These results suggest that graphene can interact strongly with both metallic and dielectric materials in close proximity, leading to non-negligible modifications to the electronic properties
    • …
    corecore